Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 231 results
76.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
77.

Optogenetic-mediated cardiovascular differentiation and patterning of human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control
Adv Genet (Hoboken), 10 Sep 2021 DOI: 10.1002/ggn2.202100011 Link to full text
Abstract: Precise spatial and temporal regulation of dynamic morphogen signals during human development governs the processes of cell proliferation, migration, and differentiation to form organized tissues and organs. Tissue patterns spontaneously emerge in various human pluripotent stem cell (hPSC) models. However, the lack of molecular methods for precise control over signal dynamics limits the reproducible production of tissue patterns and a mechanistic understanding of self-organization. We recently implemented an optogenetic-based OptoWnt platform for light-controllable regulation of Wnt/β-catenin signaling in hPSCs for in vitro studies. Using engineered illumination devices to generate light patterns and thus precise spatiotemporal control over Wnt activation, here we triggered spatially organized transcriptional changes and mesoderm differentiation of hPSCs. In this way, the OptoWnt system enabled robust endothelial cell differentiation and cardiac tissue patterning in vitro. Our results demonstrate that spatiotemporal regulation of signaling pathways via synthetic OptoWnt enables instructive stem cell fate engineering and tissue patterning.
78.

Applications of Upconversion Nanoparticles in Cellular Optogenetics.

blue cyan green Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Review
Acta Biomater, 27 Aug 2021 DOI: 10.1016/j.actbio.2021.08.035 Link to full text
Abstract: Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
79.

A guide to the optogenetic regulation of endogenous molecules.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Nat Methods, 26 Aug 2021 DOI: 10.1038/s41592-021-01240-1 Link to full text
Abstract: Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
80.

Harnessing the power of fluorescence to characterize biomolecular condensates.

blue violet iLID Cryptochromes Fluorescent proteins Review
Methods Microbiol, 12 Aug 2021 DOI: 10.1016/bs.mim.2020.11.005 Link to full text
Abstract: Biomolecular condensates are membrane-less cellular compartments that form via phase separation. They serve a multitude of functions in all types of cells. Important insights into the composition, architecture and dynamics of biomolecular condensates have been obtained by harnessing the power of fluorescence-based technologies. In this chapter, methods will be discussed for (1) fluorescent labelling of macromolecules, (2) spatial and temporal mapping and tracking of target molecules in cellular and in vitro settings, (3) controlling formation and dissolution of biomolecular condensates, and (4) fluorescence-based condensate-targeted drug discovery.
81.

The state of the art of biomedical applications of optogenetics.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Lasers Surg Med, 7 Aug 2021 DOI: 10.1002/lsm.23463 Link to full text
Abstract: Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields.
82.

Advanced Optogenetic-Based Biosensing and Related Biomaterials.

blue cyan near-infrared red violet Cryptochromes Fluorescent proteins Phytochromes Review
Materials (Basel), 26 Jul 2021 DOI: 10.3390/ma14154151 Link to full text
Abstract: The ability to stimulate mammalian cells with light, brought along by optogenetic control, has significantly broadened our understanding of electrically excitable tissues. Backed by advanced (bio)materials, it has recently paved the way towards novel biosensing concepts supporting bio-analytics applications transversal to the main biomedical stream. The advancements concerning enabling biomaterials and related novel biosensing concepts involving optogenetics are reviewed with particular focus on the use of engineered cells for cell-based sensing platforms and the available toolbox (from mere actuators and reporters to novel multifunctional opto-chemogenetic tools) for optogenetic-enabled real-time cellular diagnostics and biosensor development. The key advantages of these modified cell-based biosensors concern both significantly faster (minutes instead of hours) and higher sensitivity detection of low concentrations of bioactive/toxic analytes (below the threshold concentrations in classical cellular sensors) as well as improved standardization as warranted by unified analytic platforms. These novel multimodal functional electro-optical label-free assays are reviewed among the key elements for optogenetic-based biosensing standardization. This focused review is a potential guide for materials researchers interested in biosensing based on light-responsive biomaterials and related analytic tools.
83.

An optogenetic proximity labeling approach to probe the composition of inducible biomolecular condensates in cultured cells.

blue CRY2/CRY2 HEK293
STAR Protoc, 22 Jul 2021 DOI: 10.1016/j.xpro.2021.100677 Link to full text
Abstract: Inducible biomolecular condensates play fundamental roles in cellular responses to intracellular and environmental cues. Knowledge about their composition is crucial to understand the functions that arise specifically from the assembly of condensates. This protocol combines an optogenetic and an efficient proximity labeling approach to analyze protein modifications driven by protein condensation in cultured cells. Low endogenous biotin level ensures sharp signals. For complete details on the use and execution of this protocol, please refer to Frattini et al. (2021).
84.

The early Drosophila embryo as a model system for quantitative biology.

blue Cryptochromes Review
Cells Dev, 20 Jul 2021 DOI: 10.1016/j.cdev.2021.203722 Link to full text
Abstract: With the rise of new tools, from controlled genetic manipulations and optogenetics to improved microscopy, it is now possible to make clear, quantitative and reproducible measurements of biological processes. The humble fruit fly Drosophila melanogaster, with its ease of genetic manipulation combined with excellent imaging accessibility, has become a major model system for performing quantitative in vivo measurements. Such measurements are driving a new wave of interest from physicists and engineers, who are developing a range of testable dynamic models of active systems to understand fundamental biological processes. The reproducibility of the early Drosophila embryo has been crucial for understanding how biological systems are robust to unavoidable noise during development. Insights from quantitative in vivo experiments in the Drosophila embryo are having an impact on our understanding of critical biological processes, such as how cells make decisions and how complex tissue shape emerges. Here, to highlight the power of using Drosophila embryogenesis for quantitative biology, I focus on three main areas: (1) formation and robustness of morphogen gradients; (2) how gene regulatory networks ensure precise boundary formation; and (3) how mechanical interactions drive packing and tissue folding. I further discuss how such data has driven advances in modelling.
85.

Clinical applicability of optogenetic gene regulation.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol Bioeng, 20 Jul 2021 DOI: 10.1002/bit.27895 Link to full text
Abstract: The field of optogenetics is rapidly growing in relevance and number of developed tools. Amongst other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications. This article is protected by copyright. All rights reserved.
86.

Spatiotemporal sensitivity of mesoderm specification to FGFR signalling in the Drosophila embryo.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Developmental processes
Sci Rep, 8 Jul 2021 DOI: 10.1038/s41598-021-93512-1 Link to full text
Abstract: Development of the Drosophila embryonic mesoderm is controlled through both internal and external inputs to the mesoderm. One such factor is Heartless (Htl), a Fibroblast Growth Factor Receptor (FGFR) expressed in the mesoderm. Although Htl has been extensively studied, the dynamics of its action are poorly understood after the initial phases of mesoderm formation and spreading. To begin to address this challenge, we have developed an optogenetic version of the FGFR Heartless in Drosophila (Opto-htl). Opto-htl enables us to activate the FGFR pathway in selective spatial (~ 35 μm section from one of the lateral sides of the embryo) and temporal domains (ranging from 40 min to 14 h) during embryogenesis. Importantly, the effects can be tuned by the intensity of light-activation, making this approach significantly more flexible than other genetic approaches. We performed controlled perturbations to the FGFR pathway to define the contribution of Htl signalling to the formation of the developing embryonic heart and somatic muscles. We find a direct correlation between Htl signalling dosage and number of Tinman-positive heart cells specified. Opto-htl activation favours the specification of Tinman positive cardioblasts and eliminates Eve-positive DA1 muscles. This effect is seen to increase progressively with increasing light intensity. Therefore, fine tuning of phenotypic responses to varied Htl signalling dosage can be achieved more conveniently than with other genetic approaches. Overall, Opto-htl is a powerful new tool for dissecting the role of FGFR signalling during development.
87.

TOR signaling regulates liquid phase separation of the SMN complex governing snRNP biogenesis.

blue CRY2/CRY2 HeLa Signaling cascade control Organelle manipulation
Cell Rep, 22 Jun 2021 DOI: 10.1016/j.celrep.2021.109277 Link to full text
Abstract: The activity of the SMN complex in promoting the assembly of pre-mRNA processing UsnRNPs correlates with condensation of the complex in nuclear Cajal bodies. While mechanistic details of its activity have been elucidated, the molecular basis for condensation remains unclear. High SMN complex phosphorylation suggests extensive regulation. Here, we report on systematic siRNA-based screening for modulators of the capacity of SMN to condense in Cajal bodies and identify mTOR and ribosomal protein S6 kinase β-1 as key regulators. Proteomic analysis reveals TOR-dependent phosphorylations in SMN complex subunits. Using stably expressed or optogenetically controlled phospho mutants, we demonstrate that serine 49 and 63 phosphorylation of human SMN controls the capacity of the complex to condense in Cajal bodies via liquid-liquid phase separation. Our findings link SMN complex condensation and UsnRNP biogenesis to cellular energy levels and suggest modulation of TOR signaling as a rational concept for therapy of the SMN-linked neuromuscular disorder spinal muscular atrophy.
88.

Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch.

blue CRY2/CRY2 iLID HEK293T Jurkat NIH/3T3 SYF Signaling cascade control Organelle manipulation
Cell Rep, 22 Jun 2021 DOI: 10.1016/j.celrep.2021.109280 Link to full text
Abstract: Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state.
89.

DMA-tudor interaction modules control the specificity of in vivo condensates.

blue CRY2/CRY2 MEF-1 NIH/3T3
Cell, 10 Jun 2021 DOI: 10.1016/j.cell.2021.05.008 Link to full text
Abstract: Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
90.

Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival.

blue CRY2/CIB1 CRY2/CRY2 MCF10A Signaling cascade control Cell death
Dev Cell, 2 Jun 2021 DOI: 10.1016/j.devcel.2021.05.007 Link to full text
Abstract: Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults.
91.

Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Cell death
Dev Cell, 28 May 2021 DOI: 10.1016/j.devcel.2021.05.006 Link to full text
Abstract: What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.
92.

Synthetic biology as driver for the biologization of materials sciences.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mater Today Bio, 26 May 2021 DOI: 10.1016/j.mtbio.2021.100115 Link to full text
Abstract: Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
93.

Optogenetic Control of the Canonical Wnt Signaling Pathway During Xenopus laevis Embryonic Development.

blue CRY2/CIB1 CRY2/CRY2 BHK-21 HEK293T Xenopus in vivo Signaling cascade control Developmental processes
J Mol Biol, 19 May 2021 DOI: 10.1016/j.jmb.2021.167050 Link to full text
Abstract: Optogenetics uses light-inducible protein-protein interactions to precisely control the timing, localization, and intensity of signaling activity. The precise spatial and temporal resolution of this emerging technology has proven extremely attractive to the study of embryonic development, a program faithfully replicated to form the same organism from a single cell. We have previously performed a comparative study for optogenetic activation of receptor tyrosine kinases, where we found that the cytoplasm-to-membrane translocation-based optogenetic systems outperform the membrane-anchored dimerization systems in activating the receptor tyrosine kinase signaling in live Xenopus embryos. Here, we determine if this engineering strategy can be generalized to other signaling pathways involving membrane-bound receptors. As a proof of concept, we demonstrate that the cytoplasm-to-membrane translocation of the low-density lipoprotein receptor-related protein-6 (LRP6), a membrane-bound coreceptor for the canonical Wnt pathway, triggers Wnt activity. Optogenetic activation of LRP6 leads to axis duplication in developing Xenopus embryos, indicating that the cytoplasm-to-membrane translocation of the membrane-bound receptor could be a generalizable strategy for the construction of optogenetic systems.
94.

Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 18 May 2021 DOI: 10.3390/ijms22105300 Link to full text
Abstract: Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
95.

Optogenetic-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane.

blue CRY2/CRY2 HEK293 SH-SY5Y Control of vesicular transport
J Biol Chem, 17 May 2021 DOI: 10.1016/j.jbc.2021.100787 Link to full text
Abstract: The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine (METH) and cocaine (COC), have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with a mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after METH and nomifensine (NOM) treatment. Blue light induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.
96.

Optogenetic Control of Non-Apoptotic Cell Death.

blue cpLOV2 cpLOVTRAP CRY2/CRY2 LOVTRAP 786-O B16-F0 E. coli HEK293T HeLa Jurkat Signaling cascade control Cell death
Adv Biology, 6 May 2021 DOI: 10.1002/advs.202100424 Link to full text
Abstract: Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
97.

The Rise of Molecular Optogenetics.

blue green Cobalamin-binding domains Cryptochromes LOV domains Review
Adv Biol (Weinh), May 2021 DOI: 10.1002/adbi.202100776 Link to full text
Abstract: Abstract not available.
98.

Optogenetic control of calcium influx in mammalian cells.

blue AsLOV2 CRY2/CRY2 HEK293T HeLa
Methods Enzymol, 16 Mar 2021 DOI: 10.1016/bs.mie.2021.02.010 Link to full text
Abstract: Optogenetics combines optics and genetics to enable non-invasive interrogation of cell physiology at an unprecedented high spatiotemporal resolution. Here, we introduce Opto-CRAC as a set of genetically-encoded calcium actuators (GECAs) engineered from the calcium release-activated calcium (CRAC) channel, which has been tailored for optical control of calcium entry and calcium-dependent physiological responses in non-excitable cells and tissues. We describe a detailed protocol for applying Opto-CRAC as an optogenetic tool to achieve photo-tunable control over intracellular calcium signals and calcium-dependent gene expression in mammalian cells.
99.

Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Annu Rev Biomed Eng, 15 Mar 2021 DOI: 10.1146/annurev-bioeng-083120-111648 Link to full text
Abstract: Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
100.

Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation.

blue CRY2/CRY2 HEK293T Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Int J Mol Sci, 12 Mar 2021 DOI: 10.3390/ijms22062909 Link to full text
Abstract: Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
Submit a new publication to our database